An Introduction to MECHANICS of SOLID

BRIJ BHOOSHAN

AN INTRODUCTION TO MECHANICS OF SOLIDS

Bríj Bhooshan Yadav

Asst. Professor, Department of Mechanical Engineering (B.S.A. Collage of Engg. and Technology, Mathura)

${\mathcal T} o \ our$

Loving memory

Of

Respected Grand-Parents DadaJí; DadíJí; NanaJí &NaníJí and

Lovely Daughter Purví Bhooshan

Contents

Contents		i	
Pref	ace		x
List of symbols			xii
Gree	Greek Alphabet		
SI (l	Units)		xvi
1	Intro	oduction and Review	1
	1.1	Concept of Stress	2
	1.2	Normal Stresses	3
	1.3	Concept of Strain	6
	1.4	Hook's Law	7
	1.5	Principal of Super Position	9
	1.6	Shear Stresses and Shear Strain	12
	1.7	Hoop Stress	14
	1.8	Members in Uni – Axial State of Stress	14
	1.9	Stresses in Non – Uniform Bars	20
	1.10	Stress Due to Rotational in Bar	24
	1.11	Compound Bar	25
	1.12	Thermal Stresses	38
	1.13	Stress - Strain Relations	53
	1.14	Generalized Hook's Law	56
	1.15	Relation among Elastic Constants	58
	1.16	Concept of Strain Energy	68
	1.17	Stress Due to Suddenly Applied Loads	69
	1.18	Impact Loads - Axial Load Application	70
	1.19	Impact Loads - Bending Applications	71
	Theor	73	
	Suppl	lementary Problems	74
2	Stres	sses and Strains on Oblique Plane	77
	2.1	Stresses on Oblique Plane	78
	2.2	Material Subjected to Pure Shear	79

Contents

ii

3

2.3	Material Subjected to Two Mutually Perpendicular Direct Stresses	80
2.4	Material Subjected to Combine Direct and Shear Stresses	81
2.5	Principal Stresses	85
2.6	Graphical Solution – Mohr's Stress Circle	98
2.7	Elliptical Stress	113
2.8	Strains on an Oblique Plane	114
2.9	Principal Strain	116
2.10	Mohr's Strain Circle	117
2.11	Principal Stresses in Terms of Principal Strains	120
2.12	Use of Strain Gauges	123
Theore	tical Problems	129
Supple	mentary Problems	130
Analy	sis of Stresses	133
3.1	The General Theory of Elasticity	134
3.2	Assumptions of Linear Elasticity	134
3.3	Surface and Body Forces	136
3.4	Stresses at a Point	137
3.5	General State of Stress at a Point	138
3.6	Notation for Stress	139
3.7	Sign Convention of Stresses	141
3.8	Differential Equations of Equilibrium	141
3.9	Stress Component in an Arbitrary Plane	146
3.10	Stress Transformation	151
3.11	Applications of Transformation Equations Using Principal Stresses	153
3.12	Stress Invariant	155
3.13	Principal Planes are Orthogonal	156
3.14	State of Stresses in Principal Axis	165
3.15	Mohr's Circle for General State of Stresses	165
3.16	Octahedral Stresses	172
3.17	Lame's Stress Ellipsoid	176
3.18	Cauchy's Stress Quadric	177
3.19	Stress Function	180
3.20	St. Venant's Principle	181
3.21	Solution by Polynomials	182
3.22	Bending of a Narrow Cantilever under an End Load	186
3.23	Pure Bending of a Prismatic Bar	191
3.24	Bending of a Simply Supported Narrow Beam by a Distributed Load-	192
	ing	
3.25	Stress Equilibrium Equations in Polar Co-ordinates	204
3.26	Pure Bending of a Rectangular Section Curved Beam by Stress Func-	210
2.97	tion The Effect of Small Cincular Hole in Standard Dista	010
5.41	The Effect of Small Orcular note in Standard Plate	213

3.28 Supple	Semi-Circular Beam Subjected to End Shearing Forces	218 220
Supple		220
Analy	sis of Strain	223
4.1	Deformation of a Deformable Body	223
4.2	Strain Components	224
4.3	Deformations	229
4.4	Linear Elasticity(Change in Length of a Linear Element)	231
4.5	State of Strain at a Point	234
4.6	Rotational Components of Strain	235
4.7	Angular Change between Two Line Segments	237
4.8	Principal Strains	239
4.9	Plane Strain of State	248
4.10	Spherical and Deviator Strain and Its Invariants	250
4.11	Octahedral Strains	251
4.12	Compatibility Equations	253
4.13	Strain Components in Polar Co-ordinates	258
4.14	Compatibility Equations in Cylinder Co-ordinates	259
Supple	ementary Problems	260
Stress	s-Strain Relationship	263
5.1	Generalized Hook's Law	264
5.2	Lame's Constant	265
5.3	Equilibrium Equation of Displacement or Navier's Equation	269
5.4	Stress Formulation or Beltrami-Michell Equation of Compatibility	270
5.5	The Stress Function – Plane Strain	272
5.6	The Stresses Function-Plane Stress	274
5.7	Pure Bending of a Prismatic Bar	277
5.8	Bending of a Narrow Cantilever Under an End Load	280
5.9	Cylindrical Co-ordinates with Body Forces –Plane Strain Case	286
5.10	Cylindrical Co-ordinates with Body Forces –Plane Stress Case	287
5.11	Existence and Uniqueness of Solution	288
5.12	Elastic Solutions and Applications in Geomechanics	289
5.13	Kelvin's Problem	290
5.14	Flamant's Problem	292
5.15	Analysis to Find the Tractions That Act on the cylindrical Surface	294
	Aligned With Line Load	
5.16	Boussinesq's Problem	295
5.17	Comparison Between Kelvin's and Boussinesg's solutions	299
5.18	Cerrutti's Problem	299
5.19	Mindlin's Problem	300
		000
5.20	Applications	302

4

 $\mathbf{5}$

iii

iv Contents

	Suppl	ementary Problems	307
6	Theo	ry of Elastic Failure	309
	6.1	Different Theories of Failure	310
	6.2	Octahedral Shearing Theory	319
	6.3	Graphical Comparison of Theories of Failure	320
	6.4	Graphical Representation of the Failure Theories for Three Dimen-	321
		sional Stress Systems	
	6.5	Limitations of the Failure Theories	322
	6.6	Safety Factors	323
	Theor	etical Problems	334
	Suppl	ementary Problems	335
7	Conc	ept of Shear Force and Bending Moment Diagram	337
	7.1	Members Subjected to Flexural Loads	337
	7.2	Load	339
	7.3	Concept of Shear Force and Bending Moment in Beams	343
	7.4	Bending Moment and Shear Force Diagrams	345
	7.5	Procedure for Drawing Shear Force and Bending Moment Diagram	347
	7.6	Problems on Cantilever Beam	347
	7.7	Loading Changes or There is an Abrupt Change of Loading	352
	7.8	Problems Based on Simply Supported Beams	353
	7.9	Inclined Loading	368
	7.10	Problems Based on Over Hanging Beams	370
	7.11	Problems on Beams with Hinged Joints	379
	7.12	Eccentric Loads	382
	7.13	Point of Contraflexure / Inflextion	382
	7.14	Finding the Load and Moment Diagrams with Given Shear Diagram	383
	Suppl	ementary Problems	389
8	Theo	ry of Flexure for Initially Straight Beams	391
	8.1	Assumptions of Bending	391
	8.2	Concept of Pure Bending	392
	8.3	Bending Stresses in Beams or Derivation of Elastic Flexural Formula	393
	8.4	Unsymmetrical Beams	417
	8.5	Beam with Uniform Strength	422
	8.6	Bending of Composite or Fletched Beams	427
	8.7	Rain Force Concrete Beam	432
	8.8	Bimetallic Strip	433
	8.9	Combined Direct and Bending Stress	434
	8.10	Limitations of the Simple Bending Theory	439
	Theor	etical Problems	440
	Suppl	ementary Problems	441

9	Conce	ept of Shear Stresses in Beam	443
	9.1	Concept of Vertical and Horizontal Shear Stresses	443
	9.2	Derivation of Equation for Shearing Stress	444
	9.3	Shearing Stress Distribution in Typical Cross-Sections	446
	9.4	Shear Stress Distribution in Beams of Circular Cross-Section	455
	9.5	Shearing in Thin Circular Tube	458
	9.6	Built-Up Beams	459
	9.7	Shearing Stresses in Beams	465
	9.8	Principal Stresses in Beams	466
	Supple	ementary Problems	474
10	Defle	ction of Beam	477
	10.1	Elastic Curve Equation (or Deflection Equation)	477
	10.2	Methods for Finding the Deflection	479
	10.3	Direct Integration Method	480
	10.4	Problems Based on Cantilever Beams	481
	10.5	Problems Based on Simply Supported Beams	506
	10.6	Problems Based on Overhanging Beams	522
	10.7	Limitation of Direct Integration Methods	525
	10.8	Theory of Singularity and Discontinuity Functions	525
	10.9	Macaulay's Methods	531
	10.10	The Area-Moment / Moment-Area Methods	554
	10.11	Deflection Due to Shear	567
	10.12	Deflections Due to Temperature Effects	571
	Theor	etical Problems	573
	Supple	ementary Problems	573
11	Fixed	and Continuous Beam	577
	11.1	Propped Beam	577
	11.2	Fixed Beam	602
	11.3	Effect of Sinking of a Support	619
	11.4	Continuous Beam	622
	11.5	Superposition Method	630
	Supple	ementary Problems	632
12	Beam	s on Elastic Foundation	635
	12.1	General Concept of Foundation on Elastic Beams	636
	12.2	Infinite Beam	637
	12.3	Generalization Theory of Infinite Beam	645
	12.4	Semi-Infinite Beam on an Elastic Foundation	647
	12.5	Beam of Finite Length on Elastic Foundation	650
	12.6	Symmetrical and Anti-Symmetrical Loading	655
	12.7	Beams with Pinned Ends	658

	12.8	Beams with Built-In Ends	662		
	Supple	ementary Problems	668		
		·			
13	Energ	gy Method	671		
	13.1	Elastic Strain in a Uniaxial Stress System	671		
	13.2	Elastic Strain Energy in Shear	674		
	13.3	Generalization Form of Strain Energy	675		
	13.4	Strain Energy in Bending In Beam	677		
	13.5	Complementary Strain Energy	685		
	13.6	Castigliano's Theorem	686		
	13.7	Statically Indeterminate Beams	688		
	13.8	Maxwell's Reciprocal Theorem	715		
	13.9	Maxwell-Belt Reciprocal Theorem	717		
	13.10	Elastic Energy for Buckling Loads	718		
	13.11	Deflections Due to Temperature Changes	719		
	Supple	ementary Problems	720		
14	Bending in Curved Bars				
	14.1	Bending of Beams with Small Initial Curvature	725		
	14.2	Strain Energy of a Beam with Small Initial Curvature	726		
	14.3	Application to Piston Ring	727		
	14.4	Stresses in Bars of Large Initial Curvature	728		
	14.5	Value of e for Different Cross-Sections	730		
	14.6	Deflection of Curved Beams with Large Initial Curvature	744		
	14.7	Statically In-determinate Curved Beams Close Ring	750		
	14.8	Stresses in Fly Wheel	759		
	14.9	Deflection of Thick Ring	760		
	Supple	ementary Problems	764		
15	Unsyr	nmetrical Bending	767		
	15.1	Unsymmetrical and Symmetrical Bending	767		
	15.2	Stress at Any Point in Cross-Section	769		
	15.3	Sign Convention	770		
	15.4	Direction of Neutral Axis	770		
	15.5	Determination of Stress in Beams with Unsymmetrical Sections	771		
	15.6	Formula for Stress Referred to Rectangular Axes One of Which is the	773		
		Neutral Axes			
	15.7	Deflection of Beam Subjected to Unsymmetrical Bending	774		
	Supple	ementary Problems	790		
16	Flexu	ral Axis and Shear Centre	795		
	16.1	Shear Centre for Section Symmetrical About Both Axes	796		
	16.2	Shear Centre for Section Symmetrical About Only One Axis	796		

Contents

	16.3	Location of Shear Centre for Unsymmetrical Sections	811
	Supple	ementary Problems	814
17	Bendi	ng of Axis Plate	817
	17.1	Derivation of Axi- symmetrical Plates	817
	17.2	Uniformly Loaded on Solid Circular Plate	821
	17.3	Solid Circular Plate with Central Load	825
	17.4	Circular Plate with a Circular Hole at the Center	827
	17.5	Basic Concept of Flat Plates	834
	17.6	Governing Equation for Bending of Plates	835
	Supple	ementary Problems	838
18	Elasti	c Stability of Columns	841
	18.1	Columns and Struts	841
	18.2	Criteria for Stability of Equilibrium	842
	18.3	General Differential Equation for Beam Columns	843
	18.4	Euler's Theory	848
	18.5	Equivalent Strut Length	859
	18.6	Comparison of Euler's Theory with Experiment Results	861
	18.7	Rankine Gordon Formulae	864
	18.8	Strut with Eccentric Loading	867
	18.9	Strut with Initial Curvature	873
	18.10	Beam Column with Combined Direct Compression and Lateral load	877
	18.11	Beam Couple with End Couple	889
	18.12	Continuous Struts	891
	18.13	Tie-Rod with Lateral Loading	893
	18.14	Struts of Varying Cross-Section- Energy Method	895
	18.15	Buckling of Strut Due to Uniformly Distributed Axial Forces	898
	18.16	Effect of Shearing Force on Critical Load	899
	Theore	etical Problems	901
	Supple	ementary Problems	901
19	Memb	ers Subjected to Torsional Loads	905
	19.1	Generation of Shear Stresses	906
	19.2	Simple Torsion Theory or Development of Torsion Formula	907
	19.3	Torsion of Hollow Shafts	916
	19.4	Composite Shaft	920
	19.5	Non Uniform Torsion	931
	19.6	Members Subjected to Combined Loads	933
	19.7	General Solution of the Torsion Problem	936
	19.8	Torsion of General Prismatic Bars – St. Venant's Approach	938
	19.9	Prandtl's Solution Using Stress Function	942
	19.10	Shear Stress in Any Direction (Generalised Form)	944

vii

viii Contents

	19.11	Membrane Analogy	951	
	19.12	Applications of Membrane Analogy	954	
	19.13	Torsion in Thin Tubular Section	957	
	19.14	Torsion of Thin-Walled Multi-Shell (Cellular) Sections	958	
	Supple	ementary Problems	963	
20	Sprin	g	967	
	20.1	Closed Helical Coil	969	
	20.2	Concentric (Cluster) Springs	986	
	20.3	Open Coil Helical Spring	992	
	20.4	Conical Spring	1000	
	20.5	Flat Spiral Spring	1002	
	20.6	Leaf/ Laminated Spring	1003	
	Theore	etical Problems	1012	
	Supple	ementary Problems	1013	
21	Press	1017		
	21.1	Thin Cylinders Subjected to Internal Pressure	1018	
	21.2	Volumetric Strain in Thin Shell	1024	
	21.3	Vessels Subjected to Fluid Pressure	1029	
	21.4	Effects of End Plates and Joints	1030	
	21.5	Cylindrical Vessel with Hemispherical Ends	1031	
	21.6	Wire Winding of Thin Cylinder	1034	
	21.7	Thin Spherical Shell	1037	
	21.8	Rotating Stress in Thin Cylinder	1040	
	21.9	Revolution in Thin Shell	1041	
	Theore	etical Problems	1044	
	Supple	ementary Problems	1044	
22	Axi-Symmetric Problems			
	22.1	Thick-Walled Cylinder (Lame Theory)	1048	
	22.2	Shrinkage Fit Allowance	1063	
	22.3	Thick Spherical Shells	1072	
	22.4	Spheres with Purely Radial Displacements	1074	
	22.5	Thick Hollow Sphere	1076	
	22.6	Stresses Due to Gravitation	1078	
	22.7	Rotating Discs of Uniform Thickness	1080	
	22.8	Rotating Long Cylinder	1090	
	22.9	Disc of Uniform Strength	1094	
	22.10	Rotating Disc with Variable Thickness	1096	
	22.11	Temperature Stresses in Uniform Disc	1098	
	22.12	Thin Circular Disc	1099	
	22.13	Long Circular Cylinder	1102	

22.14	Spher	e with Temperature Stress	1105
Theoretical Problems			1108
Suppler	nentar	ry Problems	1108
Appendix-A	Cent	roid and Moment of Inertia	1113
	A.1	Center of Mass and Centre of Gravity	1113
	A.2	Centroid/First Moment of Area	1114
	A.3	Theorems to Determine Second Moment of Area	1124
	A.4	Radius of Gyration	1133
	A.5	Product of Inertia for an Area	1133
	A.6	Principal Axes and Principal Moment of Inertia	1135
Appendix-B	Prop	erties for Engineering Metals	1137
References			1139
Answer to the Selected Problems			1140
Subject Index			1143

Preface

This book has been developed from subject matter and examples that I have used in my teaching of Solid Mechanics, Structures and Strength of Materials in Universities over the last 12 years. It is intended for engineering degree courses in which solid mechanics and structures form a part. Postgraduates and those preparing for the membership of professional institutions, UPSC by examination in these subjects will also find this book useful.

The text illustrates where and how the necessary techniques are to be employed in each case. The reader will soon recognize, for example, that under elastic loading, the solution to the stress and strain suffered by a material invariably becomes that of satisfying three requirements: equilibrium, compatibility and the boundary conditions.

This textbook contains all to topics in 22 Chapters. We discuss the basic concept of stress and strain in Chapter-1, stress and strain in oblique plane Chapter-2, General analysis of stress strain and their relationship in three dimensional discuss in Chapters 3, 4 and 5. Chapter 6 deals about the theories of failure or yield criterion.

In Chapter 7 deals with concept of shear force and bending moment diagrams and solving the problems with section, point and area methods.

Bending equation in straight beams and un-symmetrical beam discussed in separate Chapters 8 and 15 respectively. Shear stress concept detailed deal in Chapter 9. Deflection obtained from double integration, area-moment methods in all beams like cantilever, simply supported, overhanging, propped, fixed and continues beams discuss in Chapters 10 and 11. Chapter 12 covered the elastic foundation of beams.

Chapter 13 deals with energy methods, which is one of the most important topics and hence, is discussed in more detail. We discuss the theorems Castigliano's, Maxwell's Reciprocal, Maxwell-Belt Reciprocal, and detailed discuss about concept of strain energy with generalization form. Concept of shear stresses flow and shear centre discuss in Chapter 16. Chapter 14 covered the curved bars, and also using the concept of energy method.

Elastic stability of columns is covered in Chapter 18, with beam columns.

Torsion discuss in great detail with circular and non-circular in Chapter 19. Chapter 20 covered springs with flat, spiral and laminated types.

Analysis of thick-walled cylindrical problems like composite tubes under internal and external pressure, rotating discs, shafts, spheres, cylinders with thermal stresses are discussed in Chapter 22. In this textbook we provide the solutions of problems of different competitive examinations like Engg. Services, IAS, UPSC, GATE, and many other universities.

M.K.S. units have been adopted in this edition for the purpose of useful to students.

I wish to thank my colleagues and seniors Dr. Pankaj Upadhyay (Ex. HOD, ME, Dept.), Mr. Sudeer Kumar Bajpai, Mr. Ram Chandra Gupta (HOD, EE Dept.), Mr. Pawan Kulshreshth, Mr. Girraj Singh, Mr. Deepak Parashar, Mr. Girijapati Sharma, Mr. Kumar Gaurav, Mr. Vinay Gupta, and Mr. Sharad Mishra for their valuable suggestions.

The author also thanks Mr. Ram Prakash Srivastava, Mrs. Madhu Srivastava, Mr. Kshtij Srivastava, Mr. Vijay Kumar Sharma, and, his past teachers and students' for proof reading the manuscript, which has all helped to shape this work.

The author thanks are due to his parents (Ram Kumar – Giriraj Kishori, Arun Kumar – Brij Bhan Kishori), wife, Brother Krishna Bhooshan, Amit Bhooshan, Sumit Bhooshan, and daughter Purvi Bhooshan without whose cooperation and encouragement this book would have never been materialized.

Although every care has been taken to make the book free of errors, yet the author shall be obliged, if errors present are brought to his notice. Feedback and suggestions are always most welcome of the book.

Brij Bhooshan

List of Symbols

A	Area
$A_{ m f}$, $A_{ m w}$	Area of flange; area of web
θ	Angle, angle of rotation of beam axis, rate of twist of a bar in torsion (angle of twist per unit length)
$ heta_{ m p}$	Angle to a principal plane or to a principal axis
$ heta_{ m s}$	Angle to a plane of maximum shear stress
l	Length, distance, curvature shortening
a, b, c	Dimensions, distances
$C ext{ or } G$	Centroid
r, R	Radius, radius of curvature ($r = l/k$), radial distance in polar coordinates
A, B, C, D	Constant of integration
У	Distance from neutral axis to outer surface of a beam
D	Diameter/ outer diameter
d	Diameter / inside diameter, dimension, distance
E	Modulus of elasticity
e	Eccentricity, dimension, distance, unit volume change (dilatation)
F	Force; shear force
q	Shear flow, shape factor for plastic bending, flexibility, frequency (Hz)
f_{T}	Torsional flexibility of a bar
G	Modulus of elasticity in shear
G	Acceleration of gravity
Η	Height, distance, horsepower
h	Height, dimensions
Ι	Moment of inertia (or second moment) of a plane area
I_{xx}, I_{yy}, I_{zz}	Moments of inertia with respect to <i>x</i> , <i>y</i> , and <i>z</i> axes
I_{xy}	Product of inertia with respect to <i>x</i> - <i>y</i> axes
$I_{ m p}$	Polar moment of inertia
I_1, I_2	Principal moments of inertia
J	Torsion constant
Κ	Bulk modulus of elasticity
k	Spring constant, stiffness, effective length factor for a column, Curvature ($k =$
	1/r), radius of gyration

b_{m}	Torsional stiffness of a har
	Length distance
L, t 1	Effective length of a column
M	Bending moment couple
N	Axial force revolutions per minute (rpm)
fos f	Factor of safety
0	Origin of coordinates Center of curvature
P	Load concentrated load power pressure (force per unit area)
F _{err}	Critical load for a column
F.	Euler load
F	Bankine load
r a w	Intensity of distributed load (force per unit distance)
q, w	Section modulus of the cross section of a heam
S	Distance distance along a curve
T T	Tensile force, twisting couple or torque, temperature
t	Thickness, time, intensity of torque (torque per unit distance)
$t_{\rm f.}$ $t_{\rm w}$	Thickness of flange: thickness of web
U U	Strain energy
V	Shear force, volume, vertical force or reaction
υ	Deflection of a beam, velocity
W	Load, weight, work
x, y, z	Rectangular axes (origin at point O)
ΔT	Temperature differential
ε	Normal strain, lateral strain in uniaxial stress
$\mathcal{E}_{xx}, \ \mathcal{E}_{yy}, \ \mathcal{E}_{zz}$	Normal strains in x , y , and z directions
$\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$	Principal normal strains
\mathcal{E}_{rr}	Radial strain
${\cal E}_{ heta heta}$	Circumferential strain
$\mathcal{E}_{ heta}$	Normal strain for inclined axes
\mathcal{E}_{t}	Thermal strain
\mathcal{E}_{y}	Yield strain
μ	Poisson's ratio
α	Angle, coefficient of thermal expansion, direction cosine
β	Angle, direction cosine
γ	Shear strain, direction cosine, weight density (weight per unit volume)
$\gamma_{xy}, \gamma_{yz}, \gamma_{zx}$	Shear strains in <i>xy</i> , <i>yz</i> and <i>zx</i> planes
δ	Deflection of a beam, displacement, elongation of a bar or spring
σ	Normal stress
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$	Normal stresses on planes perpendicular to x , y and z axes
$\sigma_{xy}, \sigma_{yz}, \sigma_{zx}$	Normal stresses on planes perpendicular to xy , yz and zx plane
$\sigma_{ m n}$	Normal stress on an inclined plane

xiv List of Symbols

$\sigma_1, \sigma_2, \sigma_3$	Principal normal stresses
σ_{rr}	Radial stress
$\sigma_{ heta heta}$	Circumferential stress
$\sigma_{ m allow}$	Allowable stress (or working stress)
$\sigma_{ m cr}$	Critical stress for a column ($\sigma_{\rm cr} = F_{\rm cr} / A$)
$\sigma_{ m t}$	Thermal stress
$\sigma_{ m yp}$, $\sigma_{ m ut}$	Ultimate stress; yield stress
$\sigma_{ m oct}$	Octahedral stress
τ	Shear stress
$ au_{ m oct}$	Octahedral shear stress
$ au_{xy}, au_{yz}, au_{zx}$	Shear stresses on planes perpendicular to the x , y and z axes and acting paral-
	lel to the <i>y</i> , <i>z</i> and <i>x</i> axes
$ au_{ m t}$	Tangential shear stress
$ au_{ heta}$	Shear stress on an inclined plane
$ au_{ m yp}$, $ au_{ m ut}$	Ultimate stress in shear; yield stress in shear

Greek Alphabet

α	Alpha	β	Beta
γ	Gamma	δ	Delta
Е	Epsilon	ζ	Zeta
η	Neta	θ	Theta
λ	Lambda	π	Pi
μ	Mu	ρ	Rho
v	Nu	χ	Chi
ξ	Xi	σ	Sigma
τ	Tau	arphi	\mathbf{Psi}
ψ	Psi	ω	Omega
ϕ	Phi	К	Kappa

Systeme International d'Unit'es (SI Units)

Conversion Factors

To Convert	to	Multiply by	
kgf	newton	9.8066	
kgf/cm ²	Pa	$9.8066 imes 10^4$	
newton	kgf	0.10197	
Ра	N/m^2	1	
kPa	kgf/cm ²	0.010197	
HP	kW	0.746	
kW	kNm/s	1	

Base Units

Quantity	Unit (Symbol)
length	meter (m)
mass	kilogram (kg)
time	second (s)
force	newton (N)
pressure	pascal (Pa), N/m ²

SI Prefixes

Prefix	Symbol	Multiplication factor
tera	Т	10^{12}
giga	G	10^{9}
mega	\mathbf{M}	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	с	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}

Reputed textbooks related to Mechanics of Materials, Solid Mechanics, and, Mechanics of Solids:

- 1. Beer, F. P. Johnston, E. R.; Mechanics of Materials, McGraw-Hill, 1994.
- 2. Butterworth, S.; Structural Analysis by Moment Distribution; Longmans; 1949.
- 3. Edmunds, H.G.; Stress Concentration at Holes in Rotating Discs. Engineer, 1954.
- 4. Hearn, E. J. Mechanics of Materials Part-I, Butterworth-Heinemann, 2nd edn. 1985.
- 5. Hearn, E. J. Mechanics of Materials Part–II, Butterworth-Heinemann, 2nd edn. 1985.
- Hibbeler, R. C.; Engineering Mechanics: Statics and Dynamics; 4th Ed.; Macmillan; New York; 1986.
- 7. Shigley, J. E., Applied Mechanics of Materials, McGraw-Hill, 1976.
- 8. Kazimi, S.M.A; Solid Mechanics; Tata McGraw Hill; 2000; 1st edition.
- 9. Kumar and Ghai; Advance Mechanics of solid; Khanna Publication, New Delhi.
- 10. Michalec, J. et al.; Strength of Materials I; Prague, 1995.
- 11. Popov, E.P.; *Mechanics of Materials*; Prentice-Hall, Inc., Englewood Cli_s, NJ, 1952.
- 12. Ryder, G.H.; Strength of Materials; Macmillan; 1969; third edition.
- 13. Salmon, E.H.; Columns, Oxford Technical Publications; 1921.
- 14. Srinath, L.S.; Advance Mechanics of Solids; Tata McGraw Hill; 2011; third edition.
- 15. Timoshenko, S.; *Strength of Materials Part II*: Advance theory of problems; D. Van Nostrand Company, Inc; 1940 second edition.
- 16. Timoshenko, S.; *Strength of Materials Part I*: Elementary theory of problems; D. Van Nostrand Company, Inc; 1940 second edition.
- 17. Timoshenko, S.; History of Strength of Materials; McGraw-Hill, Inc., New York; 1953.
- 18. Timoshenko, S.; Theory of Elastic Stability; McGraw-Hill; 1936.
- 19. Timoshenko, S.; Theory of Plates and Shells; McGraw-Hill; 1940.
- Timoshenko, S. and Young, D.H.; *Elements of Strength of Materials*; D. Van Nostrand Company; 1968; 5th edition.
- Timoshenko, S.P. and Goodier, J.N. *Theory of Elasticity*, McGraw-Hill, New York, 3rd edn. (1970).
- 22. Timoshenko, S.P. and Gere, J.M. *Mechanics of Materials*, PWS Publishing Company, Boston, 1990.
- 23. Wahl, A. M.; Mechanical Springs; Penton Publishing Co. 1963.
- 24. Zienkiewicz, O.C., and Holister, G.S.; Stress Analysis; J. Wiley; 1965.

Subject Index

Area centroids of, 1114 first moment of area, 1115 second moment of area, 1124, 1125, moment of inertia of, 1124-1134 symmetry of, 1115 Airy function. 181 Axial force, 2, 14, 15, 867, 868, 877, 880, 890, 898, 969, 993 Axial loads, 2, 19, 70, 440, 685, 687, 750 bars, 2, 19 beams, 750 columns, 843, 848, 851, 880 combined stresses, impact loads, 70 springs, 967, 969, 970, 992, 993, 996 strain energy, 70, 685, 687 Beam-columns, 843, 877 Beam, 134, 136, 181-204, 210, 218, 278, 280, 337-339, 465-467 bending, 391-395 built-up, 459, 602 cantilever, 338, 347, 481 composite, 427-429 deflection, 477-481 elastic foundation, 635-637 infinite, 637-645 propped, 577 shear-force and bending- moment diagrams, 337-339, 343-347, statically indeterminate, 577, 688 uniform strength, 422-427 unsymmetric, 417, 767 Bearing stress, 5 Bending, 71, 136, 181, 186-187, 191-213, 277-284, 391-395, 417, 767

Bending (continue) approximate theory of, 391-395 deflections, 477, unsymmetric beams, 417, 767 Bending moments, 187-188, 337, 343-344 diagrams, 345-347 sign conventions for, 343-344 Biharmonic equation, 182 Bimetallic strip, 433 Buckling, 3, 8, 322, 718, 841 columns, 841-843 critical loads for, 848, 850, 859, 861-862, 864 differential equations for, 843 Body force, 136-138, 141, 147, 206, 272, 286, 288-289, 1074, 1078 Built-up beams, 459, 602 Bulk modulus, 58, 60, 1029 Cantilever beams, 181, 186, 280, 338, deflections and slopes of, 481 propped, 577 uniform strength. 422 Castigliano's theorem, 686 applications of, 689 deflections of, 687, 727 derivation of, 687 first theorem of, 688 second theorem of, 688 Cauchy's 134 strain-strain relations, 265 stress, 53 stress formula, 148 stress quadric, 177 Centroid, 1114-1116 composite areas, 1114 moments of inertia and, 1124-1126 Channel sections of beams, 797

Circular members, bars, 906, 907 shafts, 907-910, 916, tubes, 958 Circumferential (hoop) stress, 14, 205-207, 258, 729, 818, 1018-1024, 1030-1031, 1042, 1048, 1072, 1074, 1080, 1090, 1098, Circular Disc, 207, 1085, 1090 thermal stresses in, 1099, 1100 (see also rotating discs) Clark Maxwell function, 181 Columns, 841 buckling, 718, 841-842, 898 critical loads for, 862, 899 eccentric axial loads on, 867, 870, effective length of, 859-861, Euler buckling, 848-850, Perry's formula, 870 pinned ends, 848 Rankine Gordon Formulae, 864 Secant formula for, 867 slenderness ratio, 842, stability of, 842, various support conditions for, 848-857 with end couple, 889-890 with several loads, 877-881 Combined stresses, 434, Compatibility, 181-182, 258, 259, 289, 842 Beltami-Michell equation of, 270 equation, 253-255, 259, 263, 274, St. Venant's equation, 181, 938, Complementary shear stresses, 12, 13, 59, 79, 106, 444-445, 451, Complementary strain energy, 685-686, 687 Composite beams, 427-428, 439, Continuous beams, 339, 577, 622 Core or Kernel, 436-438 Curvature, 280, 382-383, 391, 477-487, 725-(See also Deflection beams) Curved beam 725 bending of, 725-727, 727-729 deflection of, 744-747 Wilson and Querean, 729 Cylindrical pressure vessels, 1017-1019, 1031, Deflection, 477 area-moment Method of, 554-557 discontinuity function, 525, 527 double integration method, 480 due to shear, 567 Macaulay's function, 527 Macaulay's Method of, 531 singularity function, 525, 528 statically determinate beams, 481 statically indeterminate beams, 577

temperature effects and, 571 Deformation, 3, 6, 12, 38, 124, 136, 223-230, 235-237, 254, 288, 303 Disks of variable thickness, 1096 Differential equations of column buckling, 843 deflection, 477-479 elastic foundation of beams, 636-637 elastic curves, 477-479 Displacements, 136, 223-230, 235-237, 254 Distortion Energy, 316, 320, 321 Distributed loads, 192, 340-341, 383, 527-530, 639, 654, 820-821, 837-838, 881, 892, 898, Eccentric axial loads, 434-437, 867, 870 Effective length, 859-861 Elastic limit, 7, 53, 264, 311, 323 Elasticity, 1, 7, 53, 133-136, 264, 288 rigidity, relationship to, 59 volume (bulk) modulus of, 60 Energy, 38, 264 complementary, 685-686, 687 distortion, 316, 320, 321 methods, 68, 671, 686, (see Strain Energy) Euler's buckling, 848-850 Euler's load, 848-857 Euler's curve, 862 Factor of safety, 7-8, 324, Fixed beam, 339, 577, 602, 648, Flat spiral spring, 1002 Generalized Hook's law, 39, 56, 264 Helical springs, 967, 969 Closed coiled, 969, 983, Open coiled, 992 Hook's law, 7, 53, 56 Hydrostatic stress, 140, 173, 321. 322 Invariants of strain, 241 stress, 155, Impact factor, 980 Impact load, 70-71, 322, 673 Johnson's parabolic formula, 863 Lame's constant, 265 Lame's stress ellipsoid 176 Leaf springs, 1003 Limitations of Euler's theory, 861 Longitudinal strain, 7, 55, 225, 234, 1024, 1048, 1090, Longitudinal stress, 55, 391, 1018-1019, 1090

Macaulay's Method for deflection, 531

Maxwell-Betti reciprocal theorem, 717 Maxwell reciprocal theorem, 715 Membrane Analogy, 951-954 Modulus of elasticity, 7, 26, 264 Modulus of resilience, 68, 672 Modulus of rigidity, 13, 58, 905, 907, Modulus of toughness, 673 Mohr's circle, 98-108, 117, 165 arbitrary plane, 169 construction of, 98, plane strain and, 117, plane stress and, 98, triaxial stress and, 165, Moment-area method of deflection, 554-557, 602 Neutral axis, 392-394, 417, 444-446, 726, 728, 767-773 Octahedral, plane, 167, 173 strain, 251, stress, 172-173 shear stress, 310, 319 Overhangs, beam, 338, 370, 522 Parallel-axis theorem, 1125 Pi-plane, 165 Pin support, simply supported beams, 339, 353, 480, 506 Pinned-end columns, 848 Plane, octahedral, 167, 173 principal, 85, 87, 156 Shear less, 169 strain, 58, 117-118, 124-125, 182, 210, 225, 248, 272, 286, 304 stress, 57, 77, 107, 118, 124, 181-182, 207, 274, 277, 280, 287, 304 Plane strain, 58, 117-118, 124-125, 182, 210, 225, 248, 272, 286, 304, Plane stress, 57, 77, 107, 118, 124, 181-182, 207, 274, 277, 280, 287, 304, Poisson's ratio, 55, 61, 265-266 Polar moment of inertia, 909, 1125 Prandtl stress function, in stress, 180, 210, 272 in torsion, 942, 951 Pressure vessels, 324, 1017 circumferential (hoop) stress, 1018, 1037 cylindrical, 1018-1019 longitudinal (axial) stress, 1019, 1037 spherical, 1037 Principal moments of inertia, 1135 Principal axis, 165 Principal strain, 116, 120, 126, 239, Principal stress, 84, 85, 120, 153-157, 165, 167,

Principal stress (continue) 294, 311, 318, 933 beams, 466, maximum shear, 86, 167, 171 Product of inertia, 1133 Pure shear, 77, 79-80, 313, 906, 907 Quadric, Cauchy's stress, 177 Radius of curvature, 392, 725, 728 Radius of gyration, 842, 1133 Rankine-Gordon formula, 864 Reciprocal theorem, 715, 717 Redundant, 689 Reinforced concrete beams, 432 Roller support, simply supported beam, 339, 353, 480, 506 Rosettes, 123-125, 127 Saint Venant's approach, 938 compatibility equation, 255 principal, 181, 307, 440, 827, 936 theory of failure, 310, 313 torsion, 938, 951, semi-inverse method, 938 Secant formula, 867 Section modulus, 394, 422 Shear, centre, 795-800 flow, 957-959 in thin-walled sections, 957-959 Mohr's circle for, 98-108, 117, 165 Shear center, 795-800 channel sections, 797 unsymmetrical cross sections, 811 Shear flow, 957-959 Shear forces, 12, 337 diagram, 345-347 sign convention, 343 Shearless plane, 169 Shrink fit, 1063 Simply supported (simple) beams, 339 deflections and slopes of, 480, 506 shear force and bending moment diagrams, 353 Slenderness ratio, 842, 861-862, Sphere, 170, 1037, 1074 hollow, 1076 radial displacement, 1074 stress due to gravity, 1078 thermal stress, 1105 Spherical strain, 252 Spherical stress, 140, Springs, 967-1010 Stiffness, 2, 653, 842, 968, 973

Strain, 6, 53, 223 components, 224, deviator, 250 invariants, 155 linear, 6-7, 114 oblique plane, 114, plane state of, 248 principal, 116, 120, 126, 239 shear, 12-13, 115, thermal, 38, Strain energy, 68, 289, 315, 671, 727, beam, 677 complementary 685 modulus of resilience, 672 modulus of toughness, 673 shear, 674 torsion, 678 triaxial stress and, 675 uniaxial stress and, 68, 671 Strain gauge, 123 Stress, 3, 133, 137, 138, 204, 391 deviator, 140 elliptical, 113 invariants, 241 non-uniform, 20 normal, 3 octahedral, 172-173 plane Stress; 57, 77, 107, 118, 124, 181-182, 207, 274, 277, 280, 287, 304 principal, 84, 85, 120, 153-157, 165, 167, 294, 311, 318, 933 shear, 12, 443 strain relations, 7, 53, 263 thermal, 38-40, 303, Stress function, 180, 210, 272, St. Venant's approach, 938 compatibility equation, 255 principal, 181, 307, 440, 827, 936 theory of failure, 310, 313 torsion, 938, 951, semi-inverse method, 938 Superposition method, 602, 630 Superposition principal, 9, 224 Temperature-displacement relations, 38, 303, Temperature effects on deflection, 571, 719, Tensors, 3, 78, 137, 140, 152, Theory of failure, distortion energy, 310, 316 maximum strain energy, 310, 315 maximum principal strain, 310, 313 maximum principal stress, 310 maximum shearing stress, 310, 311 octahedral shearing stress, 310, 319,

Thermal stress in, circular, 1099 disc with hole, 1098, long cylinder, 1102 sphere, 1105 Torsion, 678, 905, 970 angle of twist, 906 circular members, formula, 907, 909 non uniform, 931 thin rectangular bar, 955, 968 thin walled tubes, 957 Torsional rigidity, 905, 920, 942, 947, Torsional stiffness, 910, 947, 958, Transformation equations, 77, 153, Unsymmetric, 417, 767 beams, 417, 767

Warping, 134, 466, 908, 936, 938, 951, Warping function, 938, 940,

Young's modulus, 7

bending, 767

An Introduction to Mechanics of Solid

URL: https://www.brijrbedu.org/BrijMOS.aspx

Published By:

Rukmani & Sons